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S UM IX A RY
During the I)ARPA ANN FT rogramn contract, newv neuiral neftwork itrilit',( 1out

leveloei to cairry Out amointOfoitls real -titne prt('pn( Wr>i g. >e i1(latinum Aciewnhit

ing. and contr-ol o4 b)011 spatial and meipotllod iriptit-n This lri('I summiary is Ukod l
ori~e extensive one. which rites articles friri tile lst of publicatins pp.ly

(1) Preprocessfing of visual formi and mrotion signals: Karallel cortical W
the processin of static visual formis and viov ing visual formns are derived rOut a 1)11 Iii
caled FMI Sv~ni iet rv. A solution (1f the WWhI! niot ion segn ientat ion prohlein for cm o 1rv
vision is also outlined, as xvel Ias an anal vsis of 3-D vision and fiu re-EgrOn rid p)op-OUT .A-
('ADE heorvi A Afeedforward What -and-\\hei e filte Yc models p~aralll vId vs syhan Isvtn~
generate an input. represenitat ion (What it is that is invariant to position. size. and orbenta-
tion wit hout discarding this inforn iar ion \\ here it ish Synchronized owciI at ol in a n~oit

of visual cortex are capable of rap~idly bind in ir spat ially (list ri buted featutre detectnr' irs( ii

clobally coherent segnientation . Another svwtern separates scenic' fgures froul each otlwr~i
a cluttered background. The vWson niodels have been applied to0 the analysis Of 0200i
percept ion. iIlluisory cont ours. featumre hindi ng. and reWet The, models have also Ibeen apti 'Id

to the processing of svnt.hetic apertutre radlar (",AR ) iniages.
(2) Preprocessing of acoustic signals: A netiral network nmoelI for aprpr-o eimian

acoustic sotircp generates a repreý,entatiori Of p1 th as a spatial pat ern that eiiierme hynitl

a tyvpe of netiral harmionic sieve. Neural net works are also tusedI to ealuae IN si( 1)1
norrila lizat ion xiiet hods for vowe recognhitn.

(3) Adaptive pattern recognition and categorization: Unsupervised learning:
An algoritIhinir Uern ing syste. cal led A RTY-A. achieves a 2-:3 order of inlawnliturde nal~f i -Ip

over the ARFI 2 recognition svysterni A notlher new andaog adapt ivYe r"ncrsl lf iodt Mi Pz / v
A HI) incorporates, conipu)t1ations fro fuzzy smet heory into the fi nary ATK 1 ii oelW i Mon
used as part of a larger architecture for supervised learning. fruzzy A\RT' emialili th Iiwri
lilterprot, vectors of learned adlaptivye wel ghtý > a.' if-t hen riules. thbus defintin, g sefit rut /l

('.l-Irt systemn. AFrU systems, are also) cenltral to it neural Iieorv Of visual search anod at ei nhnn
to0'-0grnentat ions: and( to an analysis of nortmal and anmnesir W ernng.

(4) Adaptive pattern recognition and prediction: Supervised learning: I h
ARTMAI:\P arid frizzy ART IA P architectutres carry out hi rernenta sriper\ ised leartin inft
recogrrit ion caegories andi multidimnensional maps in response to arlbit rar~v seqruvnces 4f anai-
log or b~inary vectors. A Mininnax Learning Rule, conjointly iiiinirnizs prtwh(livte( error ailr
ttdiHniX M'S (code ( 01Hnressi on, t hereby opt im allIy nh apOig Ieogt ion catego1(ries, to T he iý i

Qs of the itnpuit ('ilvirolnlnwn 11cncbiaik stridie> affirm ARTMINIA' Wrt'tvr ot1 oirriei n,
(Ilterntivtle triodels froto mnachine learning. xmritic algorithmis. and tr(qiial net works. WWIrl-
rig application dIohrains ~uch as large dataIbase amialsis. nwirlial prediction. rrile ext ~ionnr

and prob~ability ( stitnation. Nrsiron A HU\.\ l is a omt icdhanirel AHI'NIAl' retwiuk W
ruruli-n~irdat a friskm . \rrhit her v>Itq eirr Vs~ im VK4u~ LSI switrdl lg r le y t inW



noutral net orks QI I) h inI! inh u n ii a44 T tif if A it '111 fm- 1h Ir '! I8 'v 441w

p)"- ()1)11 e -s.

(5) Temiporal patternis, workinig niicruorv. and 3-D object recognition' Wr

memliory, neural net works. cal led K st ni ned T'ern ond Order lcu rrent Show ) I ris A.I
(ode the invariant temporal order of sequential events, withi repeated (or non1- roppeat KinI
in a mianner that is stable uinder increme-nial lkar~iin1 (oridtions . Another >%vst(in AVE

E.NI :\P. uiss spatial adn~ terpndloa evi ln ce acen Inul ation to inpitw O\ \ HI iA P periur1 18

!! noisy' Input (environmnclts. Both STORE and ART-ENIAP -systins arp lieina apiW 1 n
3-DF object recognition problems.

(6) Adaptive tirrinig: A neural net work cWidriit models ada pt ive t Kiiniig of re( wJ n bm
and rein forcement learning. [he model is closely l inked to ci rcnits in t he liip pocainqpus.

(7) Adaptive control: An unsupervised error-based learning s'y stem cal led a\'((-)
A\ssociativye NMap ('A NI) learns 3.1) spatial representations and seli-calibrat ing li-a'entq
tont.rollers in robotics applications.\A model of sen-sorx'- n-' 4or control sho'\ how\ 4)4 1 w.
eve( movement commands can be transformed by, two stages of opp ner laiosin(e~ ii o ýi1u
head-centered spatial representation of :3- D target posit ion. Opponent prof r-Ang is. iu in
a key elmeriet in an analysis of arm miovement dat a. Analy sis 'If sensoq -nut r (4)11

sytems frames a model of cereb~ella- learning. it- model of motor oa( ill itions vii V P5

bAmanual coordination and human and quiadrup~ed gait transit ions. .Anot1her sv - eim iodel,

handwriting product on. including cursive script. Related moolel propert ies are us ed in ;ci~
ap~plication to optimal control of machine set-up scheduling.

These and related projects. including model development. analysis. SiTIHiulat ion, and1( com)-
parisons with behavioral and neural data, are described below.

The contract has provided partial summer salary for the two Principal 1nvest~i~ators and(
suppor for four Research Assistants. all of whom are PhD students in the Boston Vniversit~v
Department of Cognitive and Neural Systems.



I. PREPROCESSING OF VISUAL FORM AND MOTION SI(;NAL.S

(IA) W~hy do parallel cortical systems exist for the perception of static frorm anid
mioving form?

This prolect anialyses(~ computational palnjssiis tha~t darify whfy W IarA (wdI it Ai -v:
teiis V1 -- V2. VA -- MY1 arid VI -- V2-- 11I exist for tie yr ti';! im j)o"Auc~i'

>,tict( visual forms andl moving visual fomis A syninnerv jrincicple. tilldII(J .\l
precl cmed to govrN the developmetit of t hese- ; o 11 colt ical vsynio ry > u~un ad conw
Wihe ways of symimetr ically gating sustained ( elks with t ranisient ( ellk anal oryn& Oni0,'-

sumtAine-tamnsient cells into opponent pahs of onA-~ls and ofotl s "Tst 1 ikpe i A 1' 8

arv insensitive to cdiection-of-cootrast. This -symmnetric organization c>:pil ms how~ th omi
form system (Static BCS ) generates emergent boundary 5fetliient at ions w hose oipll i!*(1
insens itiv e to li rect ion-of-contrast and i nsensi tiv\e to dl!rect ion-of-n othmin. w hten A, no
t ion form sys tern (Motion BCS) generates emergent boundary seqrnenl at ion:> who~e 01,4 ;)U
are insensitive to direction-of-ont rast but sensitive to direction-of- tmot ion. I-' \l'I
try clarifies why the geometries of static and motion form percept ion dIiffer: t~lfor &

whyv the opposite orientation of vertical is horizontal (900W) but th opposite diret it Ai)
uip is down (iSO 3 ). Opposite orientations andi directions are embiedd~ed in (gated' dipoifs(p
poflent proce-sses that are capdale of antagonistic reboundl Negat ive afterirnagos s-Tn &i
the NOW=~a and waterfall illusions. are hereby exp[lai ned. as are aft ereffects of lon,-anL
applarent motion. These antagonistic rebounids help to control a dynamnic balantv e fewem-
complementary perceptual gtates of resonance and reset. Resonance cooperatively links fea-
tures into emneigent boundary segmentations via positive feedback in at ('(' Loop, anid reset
terininates a resonance when the imagp changes, thereby ;)reventing massive smearing of
p~ercep~ts. These complemnentary preattentuve. states of resonance anid reset are relate~d to
analogous states that govern attentive feature integration. learning, and memoryvýearO 10i
Adaptive Resonance Theory. The mechanism usedl in the V' I - .11l' system to QetieraI ;1
wave of applarent motion between discrete flashes may also l)e used in other cortic al > tl.
to generate spatial sh'ýLs of attention. The theory siuggests. how the V I - V2 - .1117' ii

stream helps to complute movinga-form--in-depth andl how long-range, a pparenOt mot ion ofl-
lusory contours occnurs These results collectively argue against vision t heories that 'pni
independent processing modules. Instead, specializ d subs\ sterns interact to (tver(mis, tOn-
p)tiat ional. uncertainties and c-ompllemnentary dleficiencires. to cooperat ively vhlindl fe-u un 'into
context-snsitive resonances. and to realize svmmnet ry nrin. lples t hat are( lpredlii( ted toi'

the. development of visual cortex. [56-51A 61i

(1B) Cortical dynamics of visual motion perception: Short-range and long-range
apparent motion

The, theory of biological motion p)ercept ion is also used to explain classical and re ew
(Iat~a ab~out short-range andi long-range alplra en t looth io erc(epl s that have( unit ve %ý !)-fin
explained by alternative models. These dlat a in clutde beta mot ion : spl it mot0!ioni: furalinia

mi ot ion and reverse-contrast garnrra mrot ion: deýlta mnotion, vi st al inert ia: the tram,ýi> i n
f romn group motion to element motion in re~sponse to a Ternus display'. as the nirt1nuV
interval ( ISI) decreases: group~ motion in response to a reverse-contrast. Ternus display ~veýn
at short ISNI: speedh-up of mrothin velocity as int erfiash di-stance iiicre~ases or flash duirmtion
decreases: dependencc of the t.ran sit ion frmn eleten t mot ion to giroinp ii oition Ion st iiOlm

durration and size; various classical deppendevncies bet wee flash dirra t in. spat ialI sepa rat is "n
121. and mnot ion t hreshol k nown a~s IKortes L.awn: dependencetif n"iotin stren gh on stirn tilt
orienitation amid spuatial frequency: short-rangor and long-range forri- ci 1 r irit rai in>: anIl
hiinoctilar intera ct ions of (lasie to d(Ii qwre WS Q~ #



( IC) N~eural dynamiics of globl~a inotion Segmienitat ion: 1>1 ect ion fieldsý. ;t1por-
tures, and resonant grouping

ThiLs prolect has (leveloped a nerii('iwi %t oik model of ilobaI t10 0)! t', I !

\-Istil cortex. Calledl the Moltioli Houn:oIrv ( Conitoir-StItlli 113('S-i. 1 (1''
aiil~igtivios local niov\eirients oil it (oiiiplex iii(VIng ý.liapv' are act .._;nic !nh v
hereiu glolml 1in)tioii signal. 1rilikc riiaidi IJV('Vois rcm~drChols, wt, am~idYvf ho'A %~
Mfot ion Sýignal IS iniplartedl to all regions, of at In~oitIg figure. riot onily loi mwuYiolls at 'Xti, ý !L (

ambheigouis mo1t iOn Signals exist. lime I iiodel hereby sigets solut loll 1( the i1ob rI mj
problem. The Motion BU'S des-cribes how preproces,'sing of [not ion sýignials hy at Mlotion 01) i
ented Contrast Filter (MNO(C Filter) is joinied to long-range cooperativ'e 'i'rouping llwchalll'-Iii>
in a Niot ion T oprtI-Cmpti r Loop (M\O(C Loop) to (001 ml plium um ena 'ai a>
motion (apt tire and induced motion. The Not ion B3CSis corm poted in parallel with flw ~t ,!'
BCS of Grossberg and MIingolla, ( 1985a. 1 S5b 9Sý7 . Homologous properties of mI ho t - i

B( ' and the Static d( S. specialized to process miov.ement direct ions anid static or meWi'i ion-.
respectively. support a unified explanation of many dat a ab~out static form per ( r pion mid
motion form perception that have heretofore been uneXplained or treated sýqparwcty Prfeia(
tions abott microscopic conmputational differences of the p~arallel cortica s ýtreamsn .11TAl
and V1 - V~ 2 are made. The Motion BC'S ('an comnpute mot ion direct ions that riar 1hf
synthesized from mu~ltiple orientations with opposite directions-of-cont rast. lotf.eract ions of
Modlel simple cells. complex cells. hvpercomplex cells. anid [)ipole cells are dlescribed, wt
special emphasis given to new functional roles (direction rlisamibiguation. induced miotioni
for end stopping at multiple processing stages and to the dynamiic itrlavof spatially
short-ran~ge and long-range interactions. 1465-66]

(MD) Brightness perception, illusory contours, and corticogeniculate feedback
A neural network model of early v-isual procesSing offerS an exp~lanationi of briTht ne-.

effects often associated with Illusory contours. Top-down feedb)ack- from the miodels" armaloý!
of v-isual cortical comp~lex cells to model lateýral geniculate. nucleus (L(;,N cells are tise(d !o
enhance contrast at line ends and other areas of boundary (discontinuity. The resuilt is ;
increase in perceived b~rightoess outside a (lark line endl. akin to what lKennedy ( 19719) m enrred
"-1rightoess butttons* in his analysis of visual illusions. WVhen seve_ ral lines formi a sial
confi~trration. as In an Ehrenstein pattern. the p~erceptual effect of enhanced brightness (an
b~e quite strong. M\odel simulations show the generation of brightriess buttons. W~ith the,
1,(;. model cricuitrv embedded in a larger mno(lel of lpreattentiv-e -.-Ision. simiulations quing
cornplex inpuits show the interaction of the b)right ness butttons with real anid Illusory CoWiOUrs.:

4iL

(IE) A what-and-where neural network for invariant, imrage preprocessing
The What-and-WVhere filter is a feedforward neural network for inv-ariant m11ilauO preI-ofo

co.ssina that rersents th postio, oriontitt tion and size of an image urf, heei

ri a multiplexed spatial mrap. This ilial is uisedl to grenera:. e ao inv.kariant re'presentiat lw o
the figure that is insensitiv'e to position, orient at ion, and size for purposes rif pattern rvi m;-
riition (what it is). A nnultiscale array of oriented filters. followed bY (otlipet it ion bewt\0 wren
orienrtations and1 scales is used] to define the Where. filter. [23])

(1IF) Figure-ground separation of connected scenic figures: Boundaries, filling-in.,
and opponent processing

A neoural neftwork nbodle perfortirs(iii omiatnM itarall(l] separat ioti of -onnlected >r enlic fim_'
1ore, from one anlotheýr and fromu their I jack grounds. The model Is part of a self-i rqa iii ii ii g
arch it ectumre for i tiari antit pat tern rýcot.n itlT III ind. CI mtt ered env-ironmnuetmt. The figu re- g, am nd
s eparat ion p~roces's itoraoe op(lirat 0ions fro a etoe(Otor senm I 'S an aIon

ar ont ourII Syste (BIl(SjW ''lor He F(1; (l)1c1111 she 11 iunrinant anld fills- IIII surf'Ic piopiat if-.



<11('11 it' l)lj-ht'lleSS" and~ colo~r. !hen it] i-( wunto p A td,~:> \t I. ~l-iF le i
is to use filling-in for figtire-grotid 111 eparat lol. VeK itilit>Imwindla if
that dlefine the regbons in which filling" Ill 0((ilr,. I1w B(' (:S liodelklld lIv ;ltI f' V

network. called the (,owR-X 2 filter, that colubines or,;ent ed[(l r~ept Ive field's with rici Ii\ 'M2

comp~et itive. and cooperative inrteract ionis to detect, 1eulriead colli phi e Iwndi :.i
lipI to 50%c analog noise. This filter (omine ili mm5tl pleinent airv properties of laru re
fields and small receptive fields5. andl of on-cel Is an 1 oif- (eli>. !o ,,nrtifaPpei t~

accurate and~ less noisy 1)oundarles. Douible opponlent !ut eractl)l of E ~I)f
facilitate separation of fi~gures wvith incoinplete( 'ORT-N boundaries.Tl eitslr:v-v
an FB F network can rapidlly Separate figures that hum11an's (atIIIlot -. Irpar& P (II I ii
search ta~sks. [74-77]

(IG) Cortical dynamics of 3-D vision and figure-ground pop-out
A neural mnodel. called FACADE Theory' om n- oo-AdDp iIw a

parvocellular processing streanms from LGN to V4 can a oive( rise to 3-1) ,!isual pl~i

which figuires pop-out from their backgrounds. The miodel stii-ests how ( or it-al !;xi~
nisms such a~s boundary completion, texture Segreg~ation, and sllrfa(-e filling-in art, iied i I
this purpose. It clarifies how miono(-ularly viewed parts of an image may fill-in 11,w)I0)
1)riate surface depth from contig-uous b~inocularly 'viewed parts (luring DaVi n -teep-
Other explanations include how a 2-D image may generate a :3-1D percept. how 1p;4ti~a1l%
sparse disparity cues can generate continuous surface representations at different v'-eived
dlepths. and ho;w represent at ions of occluded[ regions can be comnpletedl and rec(Janlzed witoh-
out usually being seen. The model has also been usedl to analyse dlata about such varied
phenomena as illusory contours. shape-from- texture, visual p~ersistence. and synchronousý
cortical oscillations. it suggests how the brain uses comnputationally complemrentary blob
and interbiob processing streams wherein a hierarchical resolution of uncertainty geneate
context-sensitive visual representations that overcome several (different sources of loc-al ami-lo
guity in visual data. Cortical circuits of simple. complex. hypercomnplex. and bipole cells aire
si mulateri. Recent psychophysical and neurobiological data relevant to miodel explaniations-
and predictions are sumnmarized. [160. 62]

(1M) Synchronized oscillations for binding spatially distributed feature codes
into coherent spatial patterns

.Neural network models are describ~ed for binding out-of-phase activations of spat iafllv
distributed cells into synchronized oscillations within a single processing, cycle. These result:'
suggest how the brain may overcome the temnporal jitter" inherent in multi-level process'ingý
of spatially distributed data. Coherent synchronous p~atterns of spatially (list ribut (,d ffea-
tures are formed to represent and learn ab~out external objects and events. Temporal jit Ir
thus does not typically cause scenic p~arts to be. c-ormbinedl into the wrong visuial objectýý
During preattentive vision, such patterns may rep~resent emfergent bounfldarysgmnTt os
including, illusory contours. During attentive visual object recognition. such pat t ('s i av
occur during, an attentive resonant state that triggers new learning [Iffrn rletIes
preattentive and attentive oscillations are predicted, an(I comp~aredl wi! hi ueuroph\ ' y,1oloo ical
data concerning.- rapid synchronization of tellI activations in visual -ont ,e x [0-7 i~]

(11) Cortical dynamics of feature binding and reset
Many properties of visual Ipersistence are- hYpothesized to be (amiedl by 1)ositive fvedb ~k

in t~he visual cortical circuits that are responsible for the binding or segtnent~aton d of da
features Into coherent visual forms, with tile dlegree of persistence limrited by (11(1111 tHat
reýset these segmyent at jots at stiminuilus offset. A mlodlel of the (-orti cal local ci rciii r rv~ ('wriS ýi -
Wle for suich feature binidinrg and reset q iialit i tat i vely sinluilat'(es p~sycliopiys'ical I1o~ dat a iii



incivase of persi stenice withIii spt'al >I cara t of i If I I t (1!irw Ia I
sistence to flash luminance and duration: I('aer [twrstt ;e o,1f1 :lii-0on; !%Jis > ,I
contours, with maximal persistence at an intermediate >,tiinulus (Iuratji,,: and d'el'nic,. e
of persistence on pre-adapted stimulus orientation. Data cmncerning cortical cell respo,:<t'
to illusory and real contours are also analysed.i as are alternative models of feature binding
and persistence properties. [-17-481

(1J) Processing of synthetic aperture radar (SAR) inages by the BCS/FCS
system

An improved Boundary Contour System (BC(S) and Feature ('ontour System t F(CSi
neural network model of preattentive vision has been applied to two large images c(.OntailninT
range data gathered by a synthetic aperture radar (SAR) sensor. The goal of processing
is to make structures such as motor vehicles, road, or buildings more salient anrd more in-
terpretable to human observers than they are in the original imagery. Early processini4 by
shuntina center-surround networks compresses signal dynamic range and performs local con-
trast enhancement. Susequent processing by filters sensitive to oriented contrast. including
short-range competition and long-range cooperation, segments the image into regions. Fi-
nally, a diffusive filling-in operation within the segmented regions produces coherent visible
structures. The combination of BCS and FCS helps to locate and enhance structure over
regions of many pixels, without the resulting blur characteristic of approaches based on low
spatial frequency filtering alone. [461
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"2. PREPROCESSING OF ACOUSTIC SIGNALS

(2A) A neural network model of pitch detection and representation
A neural network model capable vof eneraming asmtial repres•eýlt ,i fornhw 0 H,

an acoustic source has been d(eveloped. The imdel(. cal led the SpatiMl Pitch .N(It,• .. t
a harmonic sieve" mechanisni whereby the strength of activation of a ,_ive. pi "ii Uw,•hd .r:,
upon a weit hted sum of narrow regionsi around the ha rnioni cs, of the nlotiihAl p t(, x-.
A key feature of the model is that higher harmonics contribute les tio a pitchi than !o,,:
ones. Suitably chosen harmonic weighting functions enable compliter sin ulation• f• i
perception data invol vi ng mistuned components. shifted harmoncs., and varh io ,yp,•1 ill
continuous spectra including rippled noise. It is shown how the weigýhting funciOh- p, O(

the dominance region and how they lead to octave shifts of pitch in reponse to atnbii;-
ous stimuli. No explicit attentional window is needed to limit pitch choices by t h n ioil.
A method is described for relating the deterministic strength-of-activation 1)Itc (Ii 1.,"o)n
to statistical human performance and for comparing the network model with (;ol>t i i-
statistical Optimum Processor Theory. [14-41]

(2B) Evaluation of speaker normalization methods for vowel recognition using
fuzzy ARTMAP and K-NN

Fuzzy ARTMAP and K-Nearest Neighbor (IK-NN) categorizers are used to evaluate in-
trinsic an(l extrinsic speaker normalization methods. Each classifier is trained on prepro-
cessed. or normalized, vowel tokens from about 30A of the speakers of the Peterson-Barney
database, then tested on data from the remaining speakers. Intrinsic normalization meth-
ods include one nonscaled, four psychophysical scales (bark. bark with end-correction, meel.
ERB), and three log scales, each tested on four different combinations of the fundamental
(F0 ) and the formants (F1 , F-, F•3). For each scale and frequency combination, four extrin>ic
speaker adaptation schemes are tested: centroid subtraction across all frequencies (0S). cen-
troid subtraction for each frequency (C'Si). linear scale (LS). and lir,'-ar transformation i LT iý
A total of :32 intrinsic and 128 extrinsic methods are thus compared. Fuzzy ARTMAP and
t"-NN show similar trends. with K-NN performing somewhat oetter and fuzzy AT.•mAP
requiring about 1/10 as much memory. The optimal intrinsic normalization method is bark
scale, or bark with end-correction, using the differences between all frequencies (Diff AMl.
The order of performance for the extrinsic methods is LT, (CSi. LS. and ('S. with fuzzy
ARTMAP performing best using bark scale with Diff All. and IK-NN choosing psychopihys-
cal measures for all except CSi. [123
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3. ADAPTIVE PATTERN RECOGNITION AND (A..TE()RIZ:VTIo)N: t.N-
SUPERVISED LEARNING

(3A) Fuzzy ART: Fast stable learning and categorization of analog patterns by
an adaptive resonance system

A fuzzy Adaptive Resonance Theory (ART) miodel capable of rapid stable ]i arl inu of
recognition categories in response to arbitrary sequences of analog or b~inary input pateri:n,
has been developed. Fuzzy ART incorporates computations from fuzzY set theory into the
ART 1 neural network, which learns to categorize only binary input patterns. The ,enera iza-
tion to learning both analog and binary input patterns is achieved by replacing appeara iies
of the intersection operator (n) in ART 1 by the MIN operator (A) of fuzzy set Iheeor. Ihe
MIN operator reduces to the intersection operator in the binary case. (Category proliferation
is prevented by normalizing input vectors at a preprocessing stage. A normalization proce-
dure called complement coding leads to a symmetric theory in which the MIN operator (,.)
and the MAX operator (v) of fuzzy set theory play complementary roles. (Complement cod-
ing uses on-cells and off-cells to represent the input pattern, and preserves individual feat ure
amplitudes while normalizing the total on-cell/off-cell vector. Learning is stable because all
adaptive weights can only decrease in time. Decreasing weights correspond to increasing
sizes of category "boxes". Smaller vigilance values lead to larger category boxes. Learning
stops when the input space is covered by boxes. With fast learning and a finite input set of
arbitrary size and composition, learning stabilizes after just one presentation of each, input
pattern. A fast-commit slow-recode option combines fast learning with a forgetting rule that
buffers system memory against noise. Using this option, rare events can be rapidly learned.
yet previously learned memories are not rapidly erased in response to statistically unreliable
input fluctuations. [36-37]

(3B) ART 2-A: An adaptive resonance algorithm for rapid category learning and
recognition

ART 2-A is an efficient algorithm that emulates the self-organizing pattern recognition
and hypothesis testing properties of the ART 2 neural network architecture. but at a ,peed
two to three orders of magnitude faster. Analysis and simulations show how the. ART 2-A
systems correspond to ART 2 dynamics at both the fast-learn limit and at intermediate
learning rates. Intermediate learning rates permit fast commitment of category nodes but
slow recoding, analogous to properties of word frequency effects, encoding specific~tv effects,.
and episodic memory. Better noise tolerance is hereby achieved without a loss of learnin-c
stability. The ART 2 and ART 2-A systems are contrasted with the leader algorithm.
The speed of ART 2-A makes practical the use of ART 2 modules in large-scale neural
computation. In particular, researchers using ART 2 for applications in the DARPA ANNT
Program have used ART 2-A for their projects. [34-.351

(3C) A neural theory of visual search
A neural theory is proposed in which visual search is accomplished by perceptual group-

ing and segregation, which occurs simultaneously across the visual field. and object recogni-
tion, which is restricted to a selected region of the field. The theory offers an alternative hv-
pothesis to recently developed variations on Feature Integration Theory (Treisman and Sato.
1991) and the Guided Search Model (Wolfe, Cave, and Franzel, 1989). A neural architecture
and search algorithm is specified that quantitatively exil-ains a wide range of psychophysical
search data (Cohen and Ivry, 1991; Mordkotf. Yantis. and Egeth, 1990: Treisman and Sawt,
1991: Wolfe. Cave, and Franzel, 1989). [67)
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(3D) Normal and amnesic learning, recognit iol, and Iueniory by a neural Illo(h-I
of cortico-hippocampal interactions

The processes by which humans and o her priimt es lea rn t.) recunize obIc(,, ili%?
been the subject of many models. Processes such as learning, categorization. at •t,•.memory search, expectation, and noveity detection work together at different stages to Icaize

object recognition. The structure and function of one such model class (:\daptive ,esonance
Theory, ART) are related to known neurological learning and memory processes. s<uh as
how inferotemporal cortex can recognize both specialized and abstract inforrnation. and h}ow
medial temporal amnesia may be caused by lesions in the hippocampal formation. Th,
model also suggests how hippocampal and inferotemporal processing may be linked durirnl
recognition learning. [20]
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4. ADAPTIVE PATTERN RECOGNITION AND PREDICTION: SUPER-
VISED LEARNING

(4A) ARTMAP: Supervised real-time learning and classification of nonstationary
data by a self-organizing neural network

A neural network architecture, called .\RTMAP. autonomously learns to classify arhitrar-
ily many. arbitrarily ordered vectors into recognition categories based on predictive suces'.-.
This supervised learning system is built up from a pair of Adaptive Resonance Theory ,mo-
ules (ARTa and ARTb) that are capable of self-organizing stable recognition categories in
response to arbitrary sequences of input patterns. During training trials, the ART,' mod-
ule receives a stream {a(P)} of input patterns, and ARTb receives a stream {biP)} of inlput
patterns, where b(P) is the correct prediction given a(P). These ART modules are linked by
an associative learning network and an internal controller that ensures autonomous syvstem
operation in real time. During test trials, the remaining patterns a(P) are presented without
b(P). and their predictions at ARTb are compared with b(P). Tested on a benchmark machine
learning database in both on-line and off-line simulations. the ARTMAP system learns or-
ders of magnitude more quickly. efficiently, and accurately than alternative algorithms. and
achieves 100% accuracy after training on less than half the input patterns in the' database. It
achieves these properties by using an internal controller that conjointly maximizes predictive
generalization and minimizes predictive error by linking predictive success to category size on
a trial-by-trial basis, using only local operations. This computation increases the vigilance
parameter pa of ARf,, by the minimal amount needed to correct a predicti,,; errur at ARTb.
ARTMAP is hereby a type of self-organizing expert system that calibrates the selectivity of
its hypotheses based upon predictive success. As a result, rare but important events can be
quickly and sharply distinguished even if they are similar to frequent events with different
consequences. Because ARTMAP learning is self-stabilizing, it can continue learning one or
more databases, without degrading its corpus of memories, until its full memory capacity is
utilized. [28-321

(4B) Fuzzy ARTMAP: A neural network architecture for incremental supervised
learning of analog multidimensional maps

Fuzzy ARTMAP extends the capabilities of ARTMAP to carry out incremental super-
vised learning of recognition categories and multidimensional maps in response to arbitrary
sequences of analog or binary input vectors. A normalization procedure called complement
coding leads to a symmetric theory in which the AND operator (A) and the OR operator
(v) of fuzzy logic play complementary roles. Improved prediction is achieved by training
the system several times using different orderings of the input set. This voting strategy can
also be used to assign confidence estimates to competing predictions given small. noisy, or
incomplete training sets. Four classes of simulations illustrate fuzzy ARTMAP performance
as compared to benchmark back propagation and genetic algorithm systems. These sinu-
lations include (i) finding points inside vs. outside a circle; (ii) learning to tell two spirals
apart; (iii) incremental approximation of a piecewise continuous function; and (iv) a letter
recognition database. [19, 21, 24-27]
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(4C) Fusion ARTMAP: A neural network architecture for multi-chalniel datla
fusion and classification

Fusion ARTM A P is a self-organizin, neural network arclitectui u fr r miulti-ch m>.l. ,it
ii multi-sensor, data fusion. Single-channel fusion -URTMAIAP is fundtionallv eqHuivalent to fz v
A.RT during unsupervised learning and to fuzz, ARTN\P durig spevise learui.
network has a svnimetric organization such that each channel can be dvnamicallv confi_,ure,,to serve either as a data input or a teaching input to the system An . RT module foms a
compressed recognition code within each channel. These codes. in turn. become iipu?5 to
a single ART system that organizes the global recognition code. When a predictive 07rror`
occurs. a process called parallel match tracking simultaneously raises vigilanrces in nmui
ART modules until reset is triggered in one of them. Parallel match tracking hereby ri-es,
only that portion of the recognition code with the poorest match, or minimum pred(t,( iw
confidence. This internally controlled selective reset process is a type of credit assImnmenIJqt
that creates a parsimoniously connected learned network. Fusion ARTNIAP's multi-chd,111,,o
coding is illustrated by simulations of the Quadruped Mammal database. [1I

(4D) Comparative performance measures of fuzzy ARTMAP, learned vector
quantization, and back propagation for handwritten character recognition

A simulation study compares the performance of fuzzy ARTMAP with that of learned
vector quantization and back propagation on a handwritten character recognition task.
Training with fuzzy ARTMAP to a fixed criterion uses many fewer epochs. Voting with
fuzzv ARTMAP yields the highest recognition rates. [22J

(4E) Rule extraction by fuzzy ARTMAP
Knowledge. in the form of fuzzy rules, can be derived from a self-organizing supervised

learning neural network called fuzzy ARTMAP. PV le extraction proceeds in two stages: prum-
ing removes those recognition nodes whose confi, nce index falls below a selected threshold.
and a quantization of continuous learned weights allows the final system state to be trans-
lated into a usable set of rules. Simulations on a medical prediction problem. the Pima
Indian Diabetes (PID) database, illustrate the method. In the simulations. pruned networks
about one-third the size of the original actually show improved performance. Quantization
yields comprehensible rules with only slight degradation in test set prediction performance.
L 39]

(4F) Medical database analysis and survival prediction by neural networks
Fuzzy ARTMAP has been used for analysis of medical (fatabases, with comparative ýtud-

ies of other neural networks and statistical methods. Survival prediction networks have been
derived from large data sets for breast cancer. cardiac bypass surgery (CAB(;). and pnleu-
monia patients. Ongoing studies focus on p)roblems of missing data and rule identification.
[1l. 7,3]

(4G) Fuzzy ARTMAP, slow learning, and probability estimation
A nonparametric probability estimation procedure uses the fuzzy ARTMAP neural net-

work. Because the procedure does not make a priori assumptions about underlyin~g proba-
bility distributions, it yields accurate estimates on a wide variety of prediction tasks. F-!uzzy
ARTMAP is used to perform probability estimation in two different modes. In a 'slov-
learning" mode, input-output associations change slowly, with the strength of each associa-
tion computing a conditional probability estimate. In "max-nodes" mode. a fixed number of
categories are coded during an initial fast learning interval, and weights are then funeld by
slow learning. Simulations illustrate system performance on tasks in which various nudrilors
of clusters in the set of input, vectors mapped to a given class. [33]
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(4H) Probabilistic neural networks and calibration of supervised learning sys-
tenms

Probabilistic, or general regression, neural networks have been developed for the cal-
ibration of supervised learning systems. A training process learns receptive field width
parameters and calibrates predictions to reflect binary outcome probabilities. [79]

(41) Construction of neural network expert systems using switching theory
This project introduces a new family of neural network architectures (NEXsT) that use

switching theory to construct and train minimal neural network classification expert sys-
tems. The primary insight that leads to the use of switching theory is that the problem of
minimizing the number of rules and the number of IF statements (antecedents) per rule in
a neural network expert system can be recast into the problem of minimizing the number
of digital gates and the number of connections between digital gates in a Very Large Scale
Integrated (VLSI) circuit. Algorithms for minimizing the number of gates and the number
of connections between gates in VLSI circuits are used, with some modification, to gener-
ate minimal neural network classification expert systems. The minimal set of rules that
the neural network generates to perform a task are readily extractable from the network's
weights and topology. Analysis and simulations on several databases illustrate the system's
performance. [78]



5. TEMPORAL PATTERNS, WORKING MEMORY, AND 3-D OBJECT
RECOGNITION

(5A) Working memory networks for learning temporal order with application to
3-D visual object recognition

\Vorking memory neural networks, called Sustained Temporal Order RLEmcurrent
iSTORE) models. encode the invariant temporal order of sequential events i short-t (riol
memory (STM). Inputs to the networks may be presented with widely differina Qrowth
rates., amplitudes, durations. and interstimulus intervals without altering the stored SI \l
representation. The STORE temporal order code is designed to enable qropili!s of 0hw
stored events to be stably learned and remembered in real time. even as new evernts pertirb
the system. Such invariance and st'ability properties are needed in neural architect ures which
self-organize learned codes for Val -ble-rate speech perception. sensory-motor planning, or
3-D visual object recognition. Using such a working memory, a self-organizing arIhitecture
for invariant 3-D visual object recognition is described. The new model is based on a model
of Seibert and Waxman, which builds a 3-D representation of an object from a temporally
ordered sequence of its 2-D aspect graphs. The new model, called an ARTSTORE model.
consists of the following cascade of processing modules: Invariant Preprncessor - ART 2 -
STORE Model - ART 2 - Outstar Network. [3-4]

(5B) Working memories for storage and recall of arbitrary temporal sequences
An extension of the STORE model encodes a working memory capable of storing and

recalling arbitrary temporal sequences of events, including repeated items. The memory
encodes the invariant temporal order of sequential events that may be presented at widely
differing speeds, durations, and interstimulus intervals. This temporal order code is designed
to enable all possible groupings of sequential events to be stably learned and remembered in
real time, even as new events perturb the system. [5-6,

(5C) ART-EMAP: Learning and prediction with spatial and temporal evidence
accumulation

ART-EMAP is a neural architecture that uses spatial and temporal evidence accumui-
lation to extend the capabilities of fuzzy ARTMAP. ART-EMAP combines supervised and
unsupervised learning and a medium-term memory process to accomplish stable pattern
category recognition in a noisy input environment. The ART-EMAP system features (i)
distributed pattern registration at a view category field; (ii) a decision criterion for rmapping
between view and object categories which can delay categorization of ambiguous objects
and trigger an evidence accumulation process when faced with a low confidence prediction:
(iii) a process that accumulates evidence at a medium-term memory (MTM) field: and (v0
an unsupervised learning algorithm to fine-tune performance after a limited initial period
of supervised network training. ART-EMAP dynamics are illustrated with a benchmark
simulation example. Applications include 3-D object recognition from a series of ambiguous
2-D views. [381



6. ADAPTIVE TIMING

(6A) A neural network model of adaptively timed reinforcement learning and
hippocampal dynamics

A new neural network models adaptively timed reinforcement learning. The adatmive
timing circuit Lý suggested to exist in the hippocampus. and to involve convergence of dew-
tate granule cells on CA3 pyramidal cells. and NY.ID: receptors. This circuit. folrmns panr
of a model neural system for the coordinated control of recognition learning, reinforcement
learning, and motor learning, whose properties clarify how an animal can learn to acquire a
delayed reward. Behavioral and neural data are summarized in support of each processint
stage of the system. The relevant anatomical sites are in thalamus. neocortex. hippocanqnpis.
hypothalamus, amygdala, and cerebellum. Cerebellar influences on motor learning are diS -
tinguished from hippocampal infuences on adaptive timing of reinforcement learning. 'Pie
model simulates how damage to the hippocampal formation disrupts adaptive tinii6! (iu i-
nates attentional blocking, and causes symptoms of medial temporal amnesia. Propertif-s oIf
learned expectations, attentional focussing, memory search. and orienting reactions to novel
events are used to analyse the blocking and amnesia data. The model also su'gests how
normal acquisition of subcortical emotional conditioning can occur after cortical ablation.
even though extinction of emotional conditioning is retarded by cortical ablation. Uhe model
simulates how increasing the duration of an unconditioned stimulus increases the amplitude
of emotional conditioning, but does not change adaptive timing; and how an in(rease in the
intensity of a conditioned stimulus "speeds up the clock," but an increase in the intensity
of an unconditioned stimulus does not. Computer simulations of the model fit parametric
conditioning data, including a Weber law property and an inverted U property. Both l)ri-
mary and secondary adaptively timed conditioning are simulated, as are data concrning
conditioning using multiple interstimulus intervals (ISIs), gradually or abruptly chan4inM
ISIs, partial reinforcement, and multiple stimuli that lead to time-averaging of responls.
Neurobiologically testable predictions are made to facilitate further tests of the model. 6t41
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7. ADAPTIVE CONTROL

(7A) Neural representations for sensory-mnotor control: Hlead-centitCCC 3-lD ta-r-
get positions from opponent eye coinuniajds

his project dlescribes how corollary disharges fnonil! 01HOW YVe tii{viiieti randni>
(-an be transformed by t wo stages of opponenl twnural procssing into ia.ea Icnt ~erml rolpr
sentationtof:3-D) target positionl. [his representatitton imlplicit lv defines a (y(lo;JOaIi ;dillal
,system whlose variables apjproxitmate the 1)1m wtlocar vergenu ceind! 11er-ical. hoizniN han!m
vert ical an gles wit.h respect to thle observer~s head. %*iriotms psvcl(ho(plyivsal dat.a (,)i (I in L'
lbinocular dist ance percelt in and reaching b~ehavior are clarified iw this represenlt"& atanIhe
representation providles a foundation for learning head-centered and body-cont ered ix n dlia
representations of both fovated and non- foveated 3-1D target positions. It also enalibý ;a
solution to be developed of the classical motor equivalence problem. whereby manyx di Iferf-ii
joint configuration1s of a redundant mnanipulator can all be usedl to realize a lesi red rap cr or
in 3).-17) space. [5

( 7B) Emergence of tri-phasic muscle activation from the nonlinear interactions
of central and spinal neural network circuits

The origin of t he t ri- phasic burst p~attern . ob~served itt the ENIG-s of opp~onenltin-
cles during rapid self-termnated( movemem nths been controversial. ('oputer simitlat ons
show that the pat tern eirg from interactions between a central neural trajectory c'on-
troller (kVITE circuit) and a p erilheral neuromuscuar fOrce controller ( FLETE circuit) Both
neural nmodels have been derived front simp1le functional constraints that have led to) prin-
cip~led explanations of a wide variety of behavioral and neurobiological data. including t he
generation of tri-phasic bursts. ]

(77C) Cerebellar learning in an opponent motor controller for adaptive load comi-
pensation and synergy formation

A tmin im al neural network model of th licerehellun is embedded xwi thin at sensory-iwurp
Eli ticiilar cont!rol syst em that mirnimis known anat ontv and p~hysiology. W\i th this e 1i z

('(rebel lar learntin g promroteOs load (011 tettsation wvhilIe aiso allowing, bot h coact ivathn t and
recilrocal inhibition of sets of antagonistic muscles. In particutlar. we sýhowv how synap~tic
long term depression gtuided by feedback from tnuscle stretch recE'latos can lead to t rans-
cerebellar gain changes that are loadl- compen satring. It is argued that the samte p)rocesses
11011 to adlapt ivel v discover rtulti-joint synergies. Simtulat ions of rapid siilglp jol t r to at in-
ttndlr lhad illustrates dlesign feasibility and stability. [71]

(7D)) O?timal control of machine set-up scheduling
A n Optimal (critrol solution to (11atigoV Of Machinte SeO - tp51) 1 S 't Ii ng is denInn>! rt hl'di

rhe mtodel is biasedl on dynamic programmnring aver age cost per stage valw iter! or as wt
forth by (Caramanis e t al. for the 2-4) case. The difculty with t ho optitnal approa( h le
in the explosive comnputational growvthI of t he resuiltinrg solu tion. .. \ miteod I oHIf redui i ii th,
'otmptutat ional cornple.xity is (lO~olpjvd usinrg ideas from biology and( neu(1ra 1lie wtwirk>.

real-timre con troller is described thit uses a Ii near-log represent atio 1)1of ,t at P>a(( i

neural net works emphy1)lOd to fit cost suirfars. 2

(7E) Vector associative maps: Unsupervised real-time error-ba,-ed learning and
control of movement trajectories

This p~roject has led to) the developunen t (f neural retwork in I eels for ada pt iv P wn A'i i ii
arm rtowenrent trajectories duiiring visual l gt ide~d reaching atn 11 i1tr(I gene1ral ly. aI frati ii ,i xiný
for unsupervised rl-inero-bsdlearnine,.T Ihe tIteS clarify how aI (lilui on ITJtt t'ailild



o it. (al le 1arn 1 t o reac tot I llrt Ia fk )'~ It >t >1:* %v w 11 %V

a1111 nio ei enOWTts leadt to iadapt ive tutiU ri o i I di ii 11)!! !() a I i i Ili-;:.-
activate the target position representations; hat an'Iiro tl (Je !o~i t1'l. O vir-lIIt 1dw
foriviat ion thait controls visnaillv guided recaching". _1l11 AN IT11 11odel I>al ailaw tijy
ci rcuit based cai th Ve r(ctor inte~gration to Endpoint .ITE) niod 1 foL [ r ariii and Upeech it
to0ry generation of Bullock and (,ross berg.,. III the VITE i (1(1oe. it iar'tet Posit ion ( (Inti dl
T PC) representý the locat ion of the (desi red It arget .the Presýent Pos .it ion ( 01iilla rld 1' Pl)

encodes the present. h and-armn configuration. TFile A\\IT F model ex plains how self-col- _T('1

T PC and P PC coordlinates are antionotnouslv .-eneral ed and iearnedi. Leýarning, 'f AVIV fF
paramieters is regulated by act ivat ion of at self- regulati n, Endo-enlous H andoir(t'iii
(ERG) of training vectors. Each vect or Is inte~gratedi at the PIN . givin~g rise to a 1iiovt ii ~li,

comm111and. The generation of each vector induces a comiplemnentary post uralphe u!2
which ERG output stops andl learning, occurs. ERG output autonomnouiliv >tops: Inl -1( '
wav that. across trials, a broad samiple of works<pace target posi t irons is geriwrai ed. Lear,1!Iiui2
of at transformnation fromn TPC to PPC occurs using the DV ats an error signlal that ;:,zr>;l
dueC to learning. This learning- schemne is called a Vector Asýsociative Map, or \;\ N. The
"<'AM mnodel is a general-p)urpose device for autononiotis real-tunie error-based learnriM~ tri-d
performiance of associative miaps. VANMs thus provide an on-line unsupervised alternr ixo%
to the off-line properties of supervised error- correctilon learningý algorithmns. V.\N moudt-
and Adaptive Resonance Theory (ART) miodels exhib~it, comiplemnentary mnatching, learn-
inz, and lperforrnance p~roperties that together lprovidie a foundation for (lesinlmirni t.i
seniSory-cognitive and cognitive-miotor autonomnous system .,1'49-5)21

(7F) A neural pattern generator that exhibits bimanual coordination and human
and quadruped gait transitions

A neural pat tern tgenerator is based upon a nonlinear ,oop~erativ-e-,onii;)et it ive.fehl
neoural network. The systemi can aenerate two >tandard humnan gaiu,: th le walk- and 1 1ýe run,!
A >,calar arousal or GO signial caus;es a bifurcation frorin one gTait to thet nlext, Alt )iOIfL
these, two gaits are, qualitatively different. t hey both have the sanie lnimb order anid nia';
exhibit oscillation freqjuencies that overlap). The miodel simiulates the walk and the run,, vl~t
cIitalitativeiv different waveform shapes. The fraction of cycle that. act ivitv is above thro'> liohi
di~t inguishes the two graits. miuch as the duty cycles of the( feet are long.er in the walik I han~
in the run. The two-channel version of the Model simiulates data fromi humian blin~antiai
coordination tasks in which anti-phase oscillations at low freqjuencies spontaneously swv
to in- phase os(illat ions at high freqjuencies, in- ph ase oscillations canl be, perfor~n ed ii,
low andi high freqjuenicies. phase fluoctunations occor at teanti- phase to in -phase a 1?i

and( a "sauleffect"' of larger errors occurs at inlterined iate phasesS. In a fou r-( hII1an nl
pat tern generator. bothi tire freqjuency anrdo t he ro-'lat i xe ph ase of oici IIati011 n, lirt ci i tii

byv sc'alar arousal. The uenerat or is used to si roulate q tiatirtpeol gaits: in part i cia r. ra
rasi insare sirmulated in t he ordier-- walk. ¶ rot., p~ace. aild ga 1101) -hat ocu iirs in 11,Ii'.

Pr r'cse swtching control is achieved by irsirig an arou sal de(-pen~dent rood nill at 10l()fll hein'ý

rinhi bitory Interact ions. This rnodrr Iation generate> a diff~eren t. functional conrnditix~i ill xi
>~frleetwork at dlifferent arousal levels. [.40-43]

(7G) VITEWRITE: A neural network model for handwriting production
A ne' 'ra.] net work miodel c'alledi VII E\V ITE FIs -,hown tI() Q eIner! e han wri-t iTI Q !i1

rI'i .The ii od(le consist s of a seq ilemtial cont rolle~r, or rnot.ror progra ni . Iiiat initeract.> 1 Iit
t rii ietiorv genera tor to mnove a hiand1 with1 redun rda nt. degrees of freedor i. 1' he nienirad T, r~i
t orvý gjenerator is t he Vector lnte-grati'ni to FrolpoIrit. ( lITE 1niode0 for >,VThrrl('iroio1Ž arno'
speed cont rol of tri ilt ijoi nt mrovements. VliTE properties enablde a siII1111f r.)le rtt rol '-Irat '2% v 'i

ge_.nerate, corn plex hand writ ten script1, if thle hanrd miodel cont aTins red rlrr1iari t 601'ee 1ffr
(lorin. The propose(i 'onit roller lauitic hes t ransienit dirýctionail (omliilrari(Is toripeo't aI
>,vnertgies at tirnies when tHeP hanlid begins to rirove. or whenr a velo('itv ljreak iii a given1 -i."i 2



is achieved. The VITE model trman>tLs I thlose iem nporallv kli.jomiit .-. mA1 T,_v,
smooth curvilinear trajectories amnong t (lporallv overflappi ng sVinraet 11ii0.V( .i,

separate "score" of onset times used in most prior models is hereby replaced 1y ;-.,i

activity-released "n-otor program" that uses few memory resources. en•abes each - r~ v
to exhibit a unimodel velocity profile during any stroke. generates letters that are iriviant
under speed and size rescaling, and enables effortless connection of letter ,hapwe' s o ords.
Speed and size rescaling are achieved by scalar (;G and (;R{() siimals that expNPI e,. (Wilpijl-

tationalls simple volitional commands. Psychophysical data concerning hand mnem,.
such as the isochrony principle, asymmetric velocity profiles, and the two-thirds 1),Ter l;v
relating movement curvature and velocity arise as emeraent properties of model in:r•it i,.
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